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Lightning breakthrough via protection systems
brings vast damage to industrial objects despite for�
mally strict correspondence of the protection project
parameters to existing technical rules. The discrep�
ancy is related to the fact that experimental investiga�
tions of the physics of lightning, which are mostly
restricted to the final stage of leader propagation, only
allow the zones of protection to be determined while
not taking into account the phenomena of lightning
attraction and selective damage. The development of
adequate calculation methods is hindered by a com�
plex, nondeterministic character of lightning leader
propagation, while most promising methods of simu�
lation modeling are far from being implemented in
practical engineering calculations.

Specific features of the task of lightning protection
allow the modeling of leader propagation to be simpli�
fied, since the characteristics of statistical (average)
lightning are of interest while random factors can be
ignored. Experimental investigations include hun�
dreds of runs for each particular position of a high�
voltage electrode. As a result, the average leader prop�
agates along the electric field lines so that, despite the
whole variety of trajectories, the average direction is
vertical [1].

Grounded objects attract the lightning. Observa�
tions show that the attractive area is determined by the
dimensions of an object (primarily, by its height).
Physical explanations of the mechanism of attraction
are based on the electrostatic interaction between the
leader charge and induced on�ground object charges
[1, 2].

According to a hypothesis that was recently formu�
lated by Aleksandrov [2], the development of a light�
ning leader in the direction of each line of an electro�
static field is equiprobable. In this case, the probability

of lightning breakthrough to a rod�protected object
can be expressed as [2]

(1)

where q is the leader charge and Q is the charge
induced in the object with protective rods. It is of
interest to consider the surface of pa = const (lightning
capture zone). The minimum distance from this sur�
face to the rod determines the streamer zone. Since
the process of leader attraction proceeds until attain�
ing the capture zone, its area provides a lower estimate
of the area of lightning attraction. Then, the final jump
stage of leader development begins, which is con�
trolled by the laws of gas discharge. The breakdown
voltage of all insulation gaps is assumed to be constant.
The lightning strikes an object under consideration if
the minimum distance from some point of the capture
zone to the object is shorter than that to the rods and
the point occurs in the breakthrough zone. The ratio of
the breakthrough zone area to the total capture zone
area determines probability pb, so that the total light�
ning breakthrough probability is p = papb.

Unfortunately, the validity of relationship (1) was
not proved in [2] and, hence, remained a hypothesis.
The present work was aimed at developing and verify�
ing the effectiveness of a method of lightning protec�
tion system calculation based on Eq. (1).

In order to implement the given method, it is nec�
essary to solve two problems of mathematical physics,
The first problem consists in determining induced
charge Q and reduces to calculation of the electro�
static field of the leader for a given three�dimensional
(3D) object and a lightning protection system of arbi�
trary configuration. Since these calculations have to be
carried out several thousand times for various posi�
tions of the leader, standard computational techniques
are ineffective or not at all applicable. The second
problem is to construct the surface of equal induced
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charge (or partial capacitance between the leader and
object). This task has not been posed previously and
can be classified as an inverse problem of mathemati�
cal physics.

We propose the following approach to multiply
repeated calculations of an electrostatic field of a com�
plex system of electrodes for a variable position of the
field source. Let leader charge q be concentrated in the
lightning head. This charge is related to vector Q of
induced charges on elements of the object by the fol�
lowing matrix equation:

where A is the square matrix of mutual potential coef�
ficients between elements with rods, B is the column
vector of mutual potential coefficients between the
leader and elements of the object, and it is assumed
that the object and rods are either grounded or their
potential (working voltage) is negligibly small com�
pared to that of the leader.

The vector of induced charges is expressed as

Substituting this expression into Eq. (1) yields

(2)

where C = (C1, C2, …, CN) is the row vector with the ith
element representing a sum of the ith column of
matrix A–1 and N is the total number of elements in the
object with rods. Vector C has to be calculated only
once, which increases the efficiency of the multiply
repeated computational procedure for variable posi�
tion of the leader.
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Let us determine the potential coefficients consti�
tuting matrix A. For this purpose, it is convenient to
subdivide the object into rod elements of equivalent
radius. Assuming that the charge of each element is
concentrated on its axis, the linear charge density can
be expressed as q/l = const. For point P at the middle
of the mth element, the potential related to charge of
the kth rod (Fig. 1) is

(3)

where α is the mutual potential coefficient and i is the
unit vector. The intrinsic potential coefficient of a rod
with radius R is

Now let us find the potential coefficients constitut�
ing matrix B. For the point model of a leader with
charge q concentrated in the head, these coefficients
are evident. Indeed, the potential of a point charge is

where β is the required potential coefficient. As will be
shown below, more complicated models of the leader
can be reduced to the point model of a charge concen�
trated in the leader head, which is necessary for the
application of Eq. (2).

Consider a rod�shaped leader of length l and
charge q. The charge density is known to increase
along the leader [1, 2] and we assume that it varies lin�
early as τ(x) = τ(l)t, where t = x/l and τ(l) = q/2l. Let
us subdivide the leader into n elements and assume
that the charge density within the kth element has a
constant value of τk = τntk, where τn = q/2l and tk ∈ [0, l].
The potential created by the leader at an arbitrary
point of the system is then

where αk is given by formula (3). Thus, the expression
for the potential of a charged rod has the same form as
that for a point charge (with a different potential coef�
ficient β), which allows Eq. (2) to be applied.

We then proceed to constructing the surface of
equal induced charge (or equal partial capacitance) for
an electrode of arbitrary shape in the field of a point
source. Since the usual methods of interpolation on a
grid are highly laborious and ineffective, we propose to
construct the electrostatic field pattern by methods
based on solving the Cauchy problem [3].

Let us seek a framework of the surface of an equal
induced charge on a set of vertical planes (cross sec�
tions). 2D local coordinate system XOY on each plane
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Fig. 1. Scheme of determining the potential coefficient of
a rod.


