Расчет кондуктивных помех и нагрева экрана контрольного кабеля

ШИШИГИН С.Л., ЧЕРЕПАНОВ А.В., ШИШИГИН Д.С.

Разряды молнии и короткие замыкания (КЗ) являются основными источниками кондуктивных помех, которые, распространяясь по контрольным кабелям, могут привести к отказу микропроцессорной аппаратуры в системах защиты и управления электрических подстанций. Двустороннее заземление экрана контрольного кабеля существенно снижает уровень импульсных и высокочастотных кондуктивных помех, однако приводит к нагреву экрана в режиме КЗ. Действующие стандарты определяют кондуктивные помехи и нагрев экрана как функцию напряжения экрана, что удобно для уединенного кабеля. Рассмотрен более общий случай с учетом магнитных связей кабелей с другими проводниками, когда в качестве расчетного параметра используется ток. Кондуктивные помехи при переном импульсе тока молнии определяются с использованием передаточного сопротивления «экран-жила» или 3D-моделью кабеля в общем случае. Для расчета нагрева используется формула ГОСТ 28895-91, которая в современных стандартах не применяется из-за допущения о постоянстве тока в процессе КЗ. Реализация этой формулы в шаговом алгоритме дает корректные результаты. Магнитные связи кабелей с другими проводниками выражены в виде внешнего сопротивления, которое увеличивает полное сопротивление экрана, снижает ток и нагрев экрана. На примере для кабеля КВВГЭ показана возможность существенного снижения кондуктивных помех и нагрева экрана кабеля за счет прокладки параллельных проводников. Сделан вывод, что для снижения кондуктивных помех и нагрева экрана кабеля необходимо снижать ток экрана.

Ключевые слова: контрольный кабель, кондуктивная помеха, нагрев экрана, передаточное сопротивление, внешнее сопротивление, шаговый алгоритм.

Разряды молнии, короткие замыкания, коммутации высоковольтного оборудования являются источниками электромагнитных и кондуктивных помех, которые могут привести к отказу, повреждению или ложному срабатыванию микропроцессорной аппаратуры в системах защиты и управления электрических подстанций.

Lightning strokes and short circuits are the main conductive noise sources which spread through control cables and lead to microprocessor-based equipment failure in protection and control systems of electric power substations. Two-sided screen grounding decreases impulse and high-frequency conductive noise level significantly, but leads to screen heating in short-circuit mode. Existing standards define conductive noise and heating of the screen as a voltage function that is convenient only for a single cable. In this paper a more common case is considered which takes into account the magnetic coupling with other conductors. Current should be used as a calculation parameter for this task. Conductive noise calculations at first lightning current impulse are carried out using the "screen-cable core" transfer impedance or 3D cable model in common case. For the heating calculation we came back to the GOST 28895-91 formula that was rejected in modern standards due to the oversimplified assumption of the current invariability in short-circuit process (in reality the current decreases as the screen heats). The implementation of this formula in step algorithm gives correct results. Cable magnetic coupling with other conductors is represented as insertion impedance which increases screen impedance, decreases screen current and heating. The numerical example for a typical cable shows the possibility of significant cable screen conductive noise and heating reduction due to parallel conductors laying. The conclusion is made that in order to reduce cable conductive noise and screen heating it is necessary to reduce screen current.

Key words: control cable, conductive noise, screen heating, transfer impedance, insertion impedance, step algorithm.

Двустороннее заземление экрана контрольного кабеля приводит к существенному снижению кондуктивных высокочастотных и импульсных помех общего типа (жила–экран) на выходе кабеля. Уровень кондуктивной помехи определяется напряжением между точками заземления экрана \( U \), уменьшенным в \( k \) раз \[ U_k = U / k \]
где $k$ — коэффициент экранирования (ошибления).

Коэффициент $k$ зависит не только от параметров самого экрана, но и точки ввода тока, точек заземления экрана, характеристик защищающего устройства (3У), трассы прокладки кабеля, наличия парадельных проводников, а также является функцией частоты или времени при импульсных процессах. Поэтому выражение (1) при нормативных значениях $k=(6-10)$ [1] сопряжено с погрешностью, а проектные решения по снижению кондуктивных помех на основе (1) могут быть недостаточно обоснованы.

Другой, более общий подход к определению кондуктивных помех связан с использованием в качестве параметра тока экрана $U_k=Z_lI$, где $l$ — длина кабеля, $Z_l$ — передающее сопротивление (сопротивление связи) экрана — жила, численно равное напряжению экрана на 1 м длины при протекании тока экрана 1 А [2]. В российских нормативах такой подход не принят.

Двухстороннее заземление экрана контрольного кабеля ставит перед проектировщиком вторую задачу — расчета нагрузки экрана в режиме КЗ.

Традиционная методика расчета нагрузки экрана кабеля установлена в ГОСТ 28895-91:

$$
\theta_f = \frac{\theta_1 + \beta}{\exp \left( \frac{t^2 \tau}{\varepsilon(t)^2 S^2 K^2} \right) - \beta};
$$

$$
K^2 = \frac{\sigma(\beta+20)}{\rho_{20}},
$$

где $\theta_1, \theta_f$ — начальная и конечная температуры; $\beta$ — величина, обратная температурному коэффициенту сопротивления проводника при 0 °C; $I$ — ток КЗ; $t$ — длительность КЗ; $\varepsilon(t)$ — коэффициент, учитывающий отвод тепла в соседние элементы; $S$ — площадь поперечного сечения экрана; $\sigma$ — удельная объемная теплоемкость экрана при 20 °C; $\rho_{20}$ — удельное сопротивление экрана при 20 °C.

Формула (2) получена в предположении постоянства тока в течение КЗ, поэтому приводит к завышенному нагрузке экрана, поскольку в действительности ток экрана уменьшается из-за увеличения его сопротивления с ростом температуры. Этот недостаток устранен в [3], где при выводе формулы нагрева условие постоянства тока заменено более реалистичным условием постоянства напряжения на экране:

$$
\theta_f = \frac{\sqrt{\theta_1 + \beta^2} + 2U^2 \tau(\beta+20)}{e(t)^2 L^2 \alpha_{20}} - \beta,
$$

где $U$ — напряжение между точками заземления экрана; $L$ — длина кабеля.

Упрощенный вариант формулы (3) использован в стандарте [4]

$$
\Delta \theta = 7(U / L)^{1.5} \sqrt{\tau}.
$$

Таким образом, современный подход к расчету кондуктивных помех и нагрева экрана контрольного кабеля, закрепленный в нормативных документах, базируется на напряжении экрана вместо тока. Казалось бы, замена тока на напряжение в расчетных выражениях не принципиальна и даже имеет преимущества, однако это справедливо только для усеченного кабеля, без учета магнитных связей с проводниками 3У, шинами уравнивания потенциала (ШУП), соседними кабелями. Учесть эти факторы проще, используя токи, а не напряжения экранов в качестве расчетных параметров.

Снизить кондуктивные помехи и нагрев — типовая задача проектировщиков. Но если отождествлять ее с задачей снижения напряжения экрана (следуя расчетным выражениям), то далеко не всегда можно найти оптимальные технические решения. Например, согласно [4] для снижения нагрузки кабель рекомендуется прокладывать в трубе, но при условии, что эффективность данного решения будет подтверждена расчетом. Поскольку при прокладке кабеля в трубе напряжение экрана кабеля при плотной сетке ЗУ уменьшается незначительно, то это правильное техническое решение, способное существенно снизить ток и нагрев экрана, не будет реализовано.

В статье исследуются способы расчета кондуктивных помех и нагрева экрана контрольного кабеля с использованием тока экрана в качестве расчетного параметра.

Ввод импульса тока (в точке $A$, рис. 1,a) приводит к крекому возрастанию потенциала ЗУ, что ведет к срыву потенциала удаленой от источника точки $B$. Близ хламперного экрана кондуктивная помеха $U=U_A = U_B$ будет приложена к входу микропроцессорного устройства и может преобразовать дополнительное значение. Двухстороннее заземление экрана приводит к противоположному экрану тока $I$, который фактически и обеспечивает снижение помех до уровня $U_k$, то есть в $k=U/U_k$ раз.

83
В важном частном случае для расчета кондуктивных помех при первом импульсе тока молнии (эквивалентная частота 25 кГц) емкостными связями можно пренебречь и воспользоваться RL-схемой (рис. 1, б).

Тогда напряжение жила–экран на выходе кабеля

$$U_k = R I + j \omega (L - M) I = Z_t I,$$

где $I$ — ток экрана; $R$ — активное сопротивление экрана; $L$ — индуктивность экрана; $M$ — взаимная индуктивность между жилой и экраном; $Z_t$ — передаточное сопротивление кабеля; $l$ — длина кабеля.

В первом приближении $M = L$, тогда

$$U_k = R_0 I,$$

где $R_0 = 0,018$ Ом/м — погонное сопротивление медного экрана кабеля КВВГэ при установленном в [4] эквивалентном сечении экрана $S = 1$ мм². Это значение $R_0$ согласуется с измерениями для кабелей диаметром 10–15 мм [3].

Таким образом, для расчета кондуктивной помехи при первом импульсе тока молнии достаточно найти ток экрана кабеля. Для этого подходят модели экрана в виде тонкостенной трубы и даже стержня диаметром, равным диаметру экрана кабеля, и погонным сопротивлением $R_0$, что позволяет проводить расчеты кондуктивных помех в любой программе расчета ЗУ.

Для расчета кондуктивных помех при втором и последующих импульсах тока молнии (с фронтом импульса 0,25 мкс) или при воздействии высокочастотной составляющей тока КЗ (на частотах 1 МГц и выше) необходимо учитывать емкостные связи между экраном и проводниками ЗУ, экраном и жилой. Для этого подходит сеточная 3D-модель кабеля (рис. 1в), которая также позволяет проводить расчеты кондуктивных помех по программам расчета ЗУ. Здесь есть трудности вычислительного характера (из-за малых размеров поперечного сечения кабеля по сравнению с его длиной, что требует существенного увеличения числа расчетных элементов), но они не принципиальны, как показывает практика применения программы ZUM [5].

В качестве примера найдем помеху жила–экран на выходе контрольного кабеля с диаметром экрана 10 мм, длиной 100 м, погонным сопротивлением $R_0 = 0,018$ Ом/м, расположенного на высоте 0,5 м над поверхностью земли, при вводе импульса тока молнии 100 кА с линейным фронтом длительностью 10 мкс в начало кабеля (рис. 2). Сетка ЗУ состоит из стальных стержней диаметром 20 мм и расположена на глубине 0,5 м в грунте с удельным сопротивлением $\rho = 100$ Ом·м.

Расчет с использованием 3D-модели кабеля считаем точным (рис. 2, кривая 1). Кабель ведет себя как активно-индуктивная цепь, сглаживающая высшие гармоники тока экрана, который согласно (5) определяется кондуктивной помехой. Кривая 2 (рис. 2), рассчитанная по (1), существенно отличается по форме от кривой 1, причем в большей части временного интервала помеха запаздывает. Фактический коэффициент ослабления, определяемый в точке максимума, равен $k = 13$, что превышает типовые значения ($k = 6–10$) из-за влияния ЗУ и точки ввода тока (в начало кабеля). Изменение точки ввода тока, нерационально выполненнее ЗУ или неправильная трассировка кабеля снижают этот коэффициент. Результаты изменяются и при другой проводимости грунта и длине кабеля. Как уже отмечалось, значение коэффициента $k$ трудно обобщить.
Результаты расчетов по формуле (5) (рис. 2, кривая 3) практически совпадают с точным решением в этой и других задачах. Формулу (5) можно рекомендовать для расчета помех при воздействии первого импульса тока молнии.

Стальная шина сечением 50×5 мм² (ШУП), проложенная на расстоянии 0,1 м от кабеля, шунтируя ток экрана (через гальванические и магнитные связи), снижает помеху в 1,6 раза (рис. 2, кривая 4). Вторая шина (с противоположной стороны от кабеля) снижает помеху еще в 1,5 раза (рис. 2, кривая 5). Таким образом, использование ШУП — эффективное средство ограничения кондуктивных помех. Аналогично действуют контрольные кабели, проложенные рядом друг с другом в кабельном канале. Заметим, что численные значения изменяются при изменении расстояния и положения ШУП относительно кабеля.

Усилия ЗУ, уменьшив шаг сети вдвое, что приведет к дополнительному снижению помехи в 1,5 раза. При этом входное сопротивление ЗУ (импульсное) уменьшится лишь в 1,16 раза (с 1,86 до 1,6 Ом), поэтому снижение помехи вновь в большой мере обусловлено шунтирующим действием проводников ЗУ.

При решении задачи по действующей методике (1) введение двух ШУП снижает напряжение экрана только на 1,5%, усиление ЗУ снижает его еще на 16%, то есть напряжение экрана в (1) меняется мало. Снижение помехи здесь обусловлено увеличением коэффициента ослабления из-за введения ШУП. Но этот коэффициент индивидуален для каждой задачи, его трудно установить априори с достаточной точностью.

Таким образом, формула (5) дает более точное решение по сравнению с (1) для расчета кондуктивных помех, возникающих при первом импульсе тока молнии.

Рассмотрим схему замещения кабеля с двусторонним заземлением экрана, параллельно которому проложена стальная шина (рис. 3).

**Рис. 3. Схема замещения кабеля с двусторонним заземлением экрана и шины**

Напряжение экрана

\[ U = RI + jxI + jx_{м}I_{мм} \approx (R + jx_{м}I_{мм})/I = (R + \Delta z)I, \]

\[ \Delta z = \Delta R + j \Delta x, \]

где \( I \) и \( I_{мм} \) — токи экрана и шины; \( R \) и \( x \) — активное и реактивное сопротивление экрана \((R > x)\); \( x_{м} \) — взаимное индуктивное сопротивление между экраном и шиной; \( \Delta z \) — вносимое сопротивление экрана. В частном случае, при \( \varphi = 0, x = 0 \) (рис. 3) ток шины отстает по фазе от тока экрана на \( \pi/2 \), тогда вносимое сопротивление — чисто активное \( \Delta z = \Delta R, \Delta x = 0 \).

В общем случае вносимое сопротивление сложным образом зависит от всех продольных и стекающих токов ЗУ, поэтому может быть определено только численно

\[ \Delta z = U/I - R = \Delta R + j \Delta x, \]

где \( U, I \) — напряжение и ток кабеля (комплексные величины).

Таким образом, увеличение сопротивления экрана с учетом вносимого сопротивления приводит к снижению тока и нагрева экрана. Для увеличения вносимого сопротивления следует снизить сопротивление параллельных проводников (увеличивая сечение или число шин) и усилить магнитную связь (сближая проводники и кабель или прокладывая кабель в трубе).

Для расчета нагрева экрана с учетом магнитных связей с другими проводниками следует переприворотывать токами, как в формуле (2). По-кажем, что погрешность этой формулы, свя-
Расчет кондуктивных помех и нагрева экрана контрольного кабеля

«ЭЛЕКТРОТЕХНИКА» № 10/2017

занную с допущением о постоянстве тока в процессе КЗ, можно устранить, если реализовать ее в шаговом алгоритме.

Разобьём временной интервал на n равных шагов длиной h так, чтобы в пределах шага ток можно принять постоянным. Тогда применение выражения (2) будет обосновано. Температура нагрева в конце n-го шага

$$\theta_{n+1} = (\theta_n + \beta) \exp \left( \frac{I_n^2 h}{(e_{n+1} \epsilon)^2 SK^2} \right) - \theta_0;$$

$$\theta_0 = 20^\circ C,$$

где все переменные описаны в (2); $e_{n+1} = e(\epsilon_{n+1})$.

Учет изменение активного сопротивления проводника с изменением температуры

$$R(0) = R_0 \left( 1 + \frac{\theta}{\beta} \right) = R_{20} \left( 1 + \frac{\theta}{\beta} \right) = R_{20} \frac{\beta + \theta}{\beta + 2 \theta},$$

где $R_0, R_{20}$ — сопротивления при нуле и 20°C; $\beta = 234.5^\circ C$ для меди. Примем допущение, что вносимое сопротивление от температуры не зависит.

Тогда из условия равенства напряжения экрана n- и (n+1)-го шага (n+1)-го шага

$$I_{n+1} \cdot z_{n+1} = \left[ \frac{R_{20} \beta + \theta + \Delta \zeta}{\beta + 2 \theta} \right] I_n I_0 = I(0).$$

Для уединенного кабеля ($\Delta \zeta = 0$)

$$I_{n+1} = \frac{\beta + \theta}{\beta} I_n.$$

В качестве примера выполним расчет нагрева кабеля КВВГЭ длиной 100 м с медным экраном сечением 1 мм² ($R_{20} = 1.78$ Ом) при начальном токе $I = 250$ А, приняв процесс адабатическим ($e = 1$). В течении КЗ напряжение экрана $U = R_{20} I = 445$ В принимается постоянным. При расчете по шаговому алгоритму (б, а, в) экран нагревается до 244 °C за 1 с, что полностью совпадает с расчетом по формуле (3) здесь и в других вариантах. Таким образом, решение по (6) достоверно.

Далее выполним расчет нагрева экрана с учетом магнитных связей кабеля. Пусть кабель проложен по ЗУ (рис. 2), ток КЗ вводится в точку заземления экрана кабеля и равен 20 КА, длительность КЗ равна 1 с. Рассмотрим четыре варианта: вначале кабель взаимодействует с проводниками ЗУ, затем добавляем ШУП, затем еще один ШУП, затем вдвое уменьшаем размер ячейки ЗУ аналогично задаче (рис. 2). Для каждого варианта рассчитаем ток, напряжение и температуру нагрева экрана кабеля; данные расчетов сведены в таблицу.

Из данных таблицы следует, что формула (3), полученная для уединенного кабеля с учетом только собственного сопротивления экрана, дает завышенный нагрев. В действительности сопротивление экрана больше на значение вносимого сопротивления $\Delta \zeta$, поэтому ток экрана и нагрев меньше. Результаты расчетов по (3) и (6) различаются тем больше, чем больше параллельных проводников.

Таким образом, существующие расчетные выражения, полученные для уединенного кабеля, в той или иной мере завышают нагрев экрана.

**Выводы**

1. Расчет кондуктивных помех и нагрева экрана контрольного кабеля в режиме КЗ следует выполнять с учетом магнитных связей кабеля с другими проводниками.
2. Для расчета кондуктивных помех при циркульном импульсе тока молнии рекомендуется формула (5), в общем случае — использование 3D-модели кабеля.
3. Для расчета нагрева можно использовать шаговый алгоритм (6), позволяющий учесть...

### Расчет температуры нагрева кабеля

<table>
<thead>
<tr>
<th>№</th>
<th>Вариант (рис. 2)</th>
<th>$U$, В/фаза</th>
<th>$I$, A/фаза</th>
<th>$R_{20}$, Ом</th>
<th>$\Delta \zeta$, Ом</th>
<th>Температура нагрева, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кабель, ЗУ</td>
<td>551 /52°</td>
<td>271 /45°</td>
<td>1,78</td>
<td>0,24+0,25</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>Кабель, ЗУ, ШУП</td>
<td>454 /55°</td>
<td>189 /41°</td>
<td>1,78</td>
<td>0,55+0,50,58</td>
<td>251</td>
</tr>
<tr>
<td>3</td>
<td>Кабель, ЗУ, два ШУП</td>
<td>400 /58°</td>
<td>144 /39°</td>
<td>1,78</td>
<td>0,85+0,9</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>Кабель, ЗУ, два ШУП, размер ячейки ЗУ 5</td>
<td>293 /59°</td>
<td>98 /38°</td>
<td>1,78</td>
<td>1,01+0,107</td>
<td>134</td>
</tr>
</tbody>
</table>

86
исследование влияния неисправностей подшипника на КПД асинхронного двигателя

сержин Н.Р., прахт В.А., димитриевский В.А.

рассмотрено влияние технического состояния подшипников на коэффициент полезного действия асинхронных двигателей (АД) с короткозамкнутым ротором. эксперименты проводились при испытаниях асинхронного двигателя в номинальном режиме с исправным и двумя неисправными подшипниками, имеющими дефекты во внутренней и внешней частях обмотки. дефекты подшипников увеличивают потери энергии, что приводит к повышенному рассеиванию тепла в зоне контактов его элементов, перегреву и снижению КПД двигателя. получены уточненные данные по изменению КПД АД с неисправным подшипником с учетом прерывного состояния машины, что является приближением к реальным условия эксплуатации. проведено тепловое обследование двигателя, представлены графические данные, характеризующие изменение температуры узлов и КПД машины при работе с неисправным подшипником. рассмотрена методика диагностики состояния подшипников по интегральным параметрам виброакустики, позволяющая анализировать возможные дефекты с учетом слабого уровня их развития и связи по частотной характеристике.

ключевые слова: асинхронный двигатель, коэффициент полезного действия, тепловое обследование, неисправности подшипников, тепловые потери, диагностический параметр, виброускорение.

исследование влияния неисправностей подшипника на КПД


Шишпин Сергей Леонидович — заведующий кафедрой электротехники Вологодского ГУ, доктор техн. наук. окончил электротехнический факультет (ЭФ) Вологодского политехнического института в 1982 г. Защитил диссертацию по теме «Разработка методов анализа и синтеза электромагнитных полей электротехнических устройств с сильными токами» в 2010 г.

Черепанов Алексей Викторович — аспирант кафедры электротехники Вологодского ГУ. Окончил ЭФ Вологодского государственного технического университета (ВГУ) в 2014 г.

Шишпин Дмитрий Сергеевич — аспирант кафедры автоматики и вычислительной техники Вологодского ГУ. Окончил ЭФ ВГУ в 2013 г.

The article deals with issues of influence of bearings' technical condition on the induction efficiency motors with squirrel-cage rotor. The experiments has been carried out using the tests of the induction motor at rated nominal mode, healthy bearing and with two defective ones, which had defects of inner and outer parts of cages. The bearing weariness causes the inequality of air gap, which leads the decrease of efficiency of machine. The bearings defects increase the energy losses, which leads to increased heat dissipation in contact parts of its elements, overheating and reducing of motor efficiency. More accurate data on changes of IM's efficiency with a faulty bearing are obtained on the heated state of the machine, which is close to the actual operating conditions. The thermal imaging inspection of motor are performed, graphic dates are presented, which describe the changes in temperature units and efficiency of machine with working with faulty bearing. The diagnostic method the condition of bearings by using integral diagnostic parameters of vibrational acceleration are reviewed, that alloys analyze possible weak defects and considers the shift of the frequency response.

Key words: induction motor, efficiency, thermal imaging inspection, bearing failures, heat losses, diagnostic parameter, vibrational acceleration.